6,996 research outputs found

    Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light

    Full text link
    We present a multimode theory of non-Gaussian operation induced by an imperfect on/off-type photon detector on a splitted beam from a wideband squeezed light. The events are defined for finite time duration TT in the time domain. The non-Gaussian output state is measured by the homodyne detector with finite bandwidh BB. Under this time- and band-limitation to the quantm states, we develop a formalism to evaluate the frequency mode matching between the on/off trigger channel and the conditional signal beam in the homodyne channel. Our formalism is applied to the CW and pulsed schemes. We explicitly calculate the Wigner function of the conditional non-Gaussian output state in a realistic situation. Good mode matching is achieved for BT\alt1, where the discreteness of modes becomes prominant, and only a few modes become dominant both in the on/off and the homodyne channels. If the trigger beam is projected nearly onto the single photon state in the most dominant mode in this regime, the most striking non-classical effect will be observed in the homodyne statistics. The increase of BTBT and the dark counts degrades the non-classical effect.Comment: 20 pages, 14 figures, submitted to Phys. Rev.

    Pulsars: Gigantic Nuclei

    Full text link
    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.Comment: 8 pages, 1 figures; Comments welcome

    Equilibrium magnetization in the vicinity of the first order phase transition in the mixed state of high-Tc superconductors

    Full text link
    We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.Comment: 4 pages, 5 figure

    Analytical solutions of the Schr\"{o}dinger equation with the Woods-Saxon potential for arbitrary ll state

    Full text link
    In this work, the analytical solution of the radial Schr\"{o}dinger equation for the Woods-Saxon potential is presented. In our calculations, we have applied the Nikiforov-Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary ll states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of nn and ll quantum numbers.Comment: 14 page

    Activation barrier scaling and crossover for noise-induced switching in a micromechanical parametric oscillator

    Full text link
    We explore fluctuation-induced switching in a parametrically-driven micromechanical torsional oscillator. The oscillator possesses one, two or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.Comment: 5 pages, 5 figure

    Electron-electron scattering effect on spin relaxation in multi-valley nanostructures

    Full text link
    We develop a theory of effects of electron-electron collisions on the Dyakonov-Perel' spin relaxation in multi-valley quantum wells. It is shown that the electron-electron scattering rate which governs the spin relaxation is different from that in a single-valley system. The theory is applied to Si/SiGe (001)-grown quantum wells where two valleys are simultaneously populated by free carriers. The dependences of the spin relaxation rate on temperature, electron concentration and valley-orbit splitting are calculated and discussed. We demonstrate that in a wide range of temperatures the electron-electron collisions can govern spin relaxation in high-quality Si/SiGe quantum wells.Comment: 6 pages, 4 figures, EPL style, revised versio

    Universality in adsorbate ordering on nanotube surfaces

    Full text link
    Numerically efficient transfer matrix technique for studying statistics of coherent adsorbates on small nanotubes has been developed. In the framework of a realistic microscopic model fitted to the data of ab initio calculations taken from literature sources, the ordering of potassium adsorbate on (6,0) single-walled carbon nanotube has been studied. Special attention has been payed to the phase transition-like abrupt changes seen in the adsorption isotherms at low temperature. It has been found that the behavior during the transitions conforms with the universality hypothesis of the theory of critical phenomena and is qualitatively the same as in the one dimensional Ising model. Quantitatively the critical behavior can be fully described by two parameters. Their qualitative connection with the properties of interphase boundaries is suggested but further research is needed to develop a quantitative theory.Comment: 11 pages, 6 figures; some typos correcte

    Critical currents, flux-creep activation energy and potential barriers for the vortex motion from the flux creep experiments

    Full text link
    We present an experimental study of thermally activated flux creep in a superconducting ring-shaped epitaxial YBCO film as well as a new way of analyzing the experimental data. The measurements were made in a wide range of temperatures between 10 and 83 K. The upper temperature limit was dictated by our experimental technique and at low temperatures we were limited by a crossover to quantum tunneling of vortices. It is shown that the experimental data can very well be described by assuming a simple thermally activated hopping of vortices or vortex bundles over potential barriers, whereby the hopping flux objects remain the same for all currents and temperatures. The new procedure of data analysis also allows to establish the current and temperature dependencies of the flux-creep activation energy U, as well as the temperature dependence of the critical current Ic, from the flux-creep rates measured at different temperatures. The variation of the activation energy with current, U(I/Ic), is then used to reconstruct the profile of the potential barriers in real space.Comment: 12 pages, 13 Postscript figures, Submitted to Physical Review
    • …
    corecore